Uniqueness of meromorphic functions with their derivatives sharing a small function

Harina P. Waghamore ${ }^{1}$ and Sangeetha Anand ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Jnanabharathi Campus, Bangalore University, Bangalore-560056, INDIA
E-mail: harinapw@gmail.com ${ }^{1}$, sangeetha.ads13@gmail.com ${ }^{2}$

Abstract

In this paper, we investigate the problems concerning meromorphic functions sharing a small function with their derivatives. We study the uniqueness of meromorphic functions of the form and using the notion of weighted sharing

2010 Mathematics Subject Classification. 30D35

Keywords. Uniqueness, meromorphic functions, derivatives, weighted sharing, small function.

1 Introduction and main results

Let f and g be two non-constant meromorphic functions defined in the open complex plane \mathbb{C}. We adopt the standard notations of the Nevanlinna theory of meromorphic functions as explained in [4]. Let $a \in \mathbb{C} \cup\{\infty\}$, we say that f and g share the value a IM (ignoring multiplicity) if $f-a$ and $g-a$ have the same zeros. If $f-a$ and $g-a$ have the same zeros with the same multiplicities, then we say that f and g share the value a CM (counting multiplicity).

A function $a(z)$ is said to be a small function of f, if $a(z)$ is a meromorphic function satisfying $T(r, a(z))=S(r, f)$, i.e. $T(r, a)=o(T(r, f))$ as $r \rightarrow+\infty$, possibly outside a set of finite linear measure. We define $E(a, f)=\{z \in \mathbb{C}: f(z)-a(z)=0\}$ where a zero of $f-a$ is counted according to its multiplicity, similarly $\bar{E}(a, f)$ denotes the zeros of $f-a$, where a zero is counted only once. For a non-negative integer k, we denote by $E_{k}(a, f)$ the set of all zeros of $f-a$, where a zero of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a, f)=E_{k}(a, g)$, then f and g share the function a with weight k.

We write " f and g share (a, k) " to mean that " f and g share the function a with weight k ". If f and g share (a, k), then f and g share (a, p) for $0 \leq p<k$.

For notational purposes, let f and g share 1 IM . Let z_{0} be a 1 -point of f of order p, a 1-point of g of order q. We denote by $N_{11}\left(r, \frac{1}{f-1}\right)$ the counting function of those 1-points of f and g where $p=q=1$. By $N_{E}^{(2}\left(r, \frac{1}{f-1}\right)$ we denote the counting function of those 1-points of f and g where $p=q \geq 2$. Also, $\bar{N}_{L}\left(r, \frac{1}{f-1}\right)$ denotes the counting function of those 1-points of both f and g where $p>q$. It is easy to see that

$$
\begin{aligned}
\bar{N}\left(r, \frac{1}{f-1}\right) & =N_{11}\left(r, \frac{1}{f-1}\right)+\bar{N}_{L}\left(r, \frac{1}{f-1}\right)+\bar{N}_{L}\left(r, \frac{1}{g-1}\right)+N_{E}^{(2}\left(r, \frac{1}{g-1}\right) \\
& =\bar{N}\left(r, \frac{1}{g-1}\right)
\end{aligned}
$$

For a positive integer k and $a \in \mathbb{C} \cup\{\infty\}$, we denote by $N_{k)}\left(r, \frac{1}{f-a}\right)\left(\right.$ or $\left.\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)\right)$ the counting function (reduced counting function) of those a-points of f whose multiplicities are not less than p. Similarly, $N_{(k}\left(r, \frac{1}{f-a}\right)\left(\right.$ or $\left.\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)\right)$ the counting function (reduced counting function) of those a-points of f whose multiplicities are not greater than p.
Set

$$
\begin{aligned}
N_{k}\left(r, \frac{1}{f-a}\right) & =\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right) \\
\Theta(a, f) & =1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)} \\
\delta(a, f) & =1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)} \\
\delta_{k}(a, f) & =1-\varlimsup_{r \rightarrow \infty} \frac{N_{k}\left(r, \frac{1}{f-a}\right)}{T(r, f)}
\end{aligned}
$$

Clearly,

$$
0 \leq \delta(a, f) \leq \delta_{k}(a, f) \leq \delta_{k-1}(a, f) \ldots \leq \delta_{1}(a, f)=\Theta(a, f)
$$

In 1996, Brück [3] proposed the following famous conjecture.
Conjecture. Let f be a non-constant entire function. Suppose

$$
\rho_{1}(f)=\underset{r \rightarrow \infty}{\limsup } \frac{\log \log T(r, f)}{\log r} .
$$

If $\rho_{1}(f)$ is not a positive integer or infinite and if f and f^{\prime} share the value 1 CM , then

$$
\frac{f^{\prime}-1}{f-1} \equiv c \text { for some non-zero constant } c
$$

Regarding the above conjecture, investigations and many results have been obtained (see. [5], [7], [8]).

In 2005, Zhang [9] studied the problem of a meromorphic function sharing a small function and obtained the following result.
Theorem A. Let f be a non-constant meromorphic function and $k(\geq 1), l(\geq 0)$ be integers. Also, let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic function such that $T(r, a)=S(r, f)$. Suppose that $f-a$ and $f^{(k)}-a$ share $(0, l)$. If $l \geq 2$ and

$$
\begin{equation*}
(3+k) \Theta(\infty, f)+2 \delta_{2+k}(0, f)>k+4 \tag{1.1}
\end{equation*}
$$

or if $l=1$ and

$$
\begin{equation*}
(4+k) \Theta(\infty, f)+3 \delta_{2+k}(0, f)>k+6 \tag{1.2}
\end{equation*}
$$

or if $l=0$ and

$$
\begin{equation*}
(6+2 k) \Theta(\infty, f)+5 \delta_{2+k}(0, f)>2 k+10 \tag{1.3}
\end{equation*}
$$

then $f \equiv f^{(k)}$.
Recently, J. D. Li [6], improved the above result by replacing the conditions in (1.1) - (1.3) by weaker ones and obtained the following result.

Theorem B. Let f be a non-constant meromorphic function and $k(\geq 1), l(\geq 0)$ be integers. Also, let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. Suppose that $f-a$ and $f^{(k)}-a$ share $(0, l)$. If $l \geq 2$ and

$$
(3+k) \Theta(\infty, f)+\delta_{2}(0, f)+\delta_{2+k}(0, f)>k+4,
$$

or if $l=1$ and

$$
\left(\frac{7}{2}+k\right) \Theta(\infty, f)+\frac{1}{2} \Theta(0, f)+\delta_{2}(0, f)+\delta_{2+k}(0, f)>k+5
$$

or if $l=0$ and

$$
(6+2 k) \Theta(\infty, f)+2 \Theta(0, f)+\delta_{2}(0, f)+\delta_{1+k}(0, f)+\delta_{2+k}(0, f)>2 k+10
$$

then $f \equiv f^{(k)}$.
To state our main result, we assume the following notations.
Let $\mathcal{P}(w)=a_{n+m} w^{n+m}+\ldots+a_{n} w^{n}+\ldots+a_{0}=a_{n+m} \prod_{i=1}^{s}\left(w-w_{p_{i}}\right)^{p_{i}}$,
where $a_{j}(j=0,1,2, \ldots, n+m-1), a_{n+m} \neq 0$ and $w_{p_{i}}(i=1,2, \ldots, s)$ are distinct finite complex numbers and $2 \leq s \leq n+m$ and $p_{1}, p_{2}, \ldots, p_{s}, s \geq 2, n, m$ and k are all positive integers with $\sum_{i=1}^{s} p_{i}=n+m$.
Let $p>\max _{p \neq p_{i}, i=1,2, \ldots, r}\left\{p_{i}\right\}, r=s-1$, where s and r are two positive integers.
Let $P\left(w_{1}\right)=a_{n+m} \prod_{i=1}^{s-1}\left(w_{1}+w_{p}-w_{p_{i}}\right)^{p_{i}}=b_{q} w_{1}^{q}+b_{q-1} w_{1}^{q-1}+\ldots+b_{0}$, where $a_{n+m}=b_{q}, w_{1}=$ $w-w_{p}, q=n+m-p$. Therefore, $\mathcal{P}(w)=w_{1}^{p} P\left(w_{1}\right)$.
We assume $P\left(w_{1}\right)=b_{q} \prod_{i=1}^{r}\left(w_{1}-\alpha_{i}\right)^{p_{i}}$, where $\alpha_{i}=w_{p_{i}}-w_{p},(i=1,2, \ldots, r)$, be distinct zeros of $P\left(w_{1}\right)$.
Definition 1.1 (see [2]). For two positive integers n, p we define $\mu_{p}=\min \{n, p\}$ and $\mu_{p}^{*}=$ $p+1-\mu_{p}$. Then it is clear that

$$
\begin{equation*}
N_{p}\left(r, \frac{1}{f^{n}}\right) \leq \mu_{p} N_{\mu_{p}^{*}}\left(r, \frac{1}{f}\right) \tag{1.4}
\end{equation*}
$$

In the present paper, we extend Theorem B by investigating the uniqueness of meromorphic functions of the form $f_{1}^{p} P\left(f_{1}\right)-a$ and $\left(f_{1}^{p} P\left(f_{1}\right)\right)^{(k)}-a$ and obtain the following result.

Theorem 1.1. Let $k(\geq 1), l(\geq 0), n(\geq 1), p(\geq 1)$ and $m(\geq 0)$ be integers, f and $f_{1}=f-w_{p}$ be two non-constant meromorphic functions. Let $\mathcal{P}(z)=a_{m+n} z^{m+n}+\ldots+a_{n} z^{n}+\ldots+a_{0}, a_{m+n} \neq 0$, be a polynomial in z of degree $m+n$ such that $\mathcal{P}(f)=f_{1}^{p} P\left(f_{1}\right)$. Also let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function with respect to f. Suppose $\mathcal{P}(f)-a$ and $(\mathcal{P}(f))^{(k)}-a$ share $(0, l)$. If $l \geq 2$ and

$$
\begin{equation*}
(k+3) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)>m+n-2 p+k+3+\mu_{2}+\mu_{k+2} \tag{1.5}
\end{equation*}
$$

or $l=1$ and

$$
\begin{array}{r}
\left(k+\frac{7}{2}\right) \Theta(\infty, f)+\frac{1}{2} \Theta\left(w_{p}, f\right)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right) \\
>\frac{3(m+n)-5 p}{2}+k+4+\mu_{2}+\mu_{k+2} \tag{1.6}
\end{array}
$$

or $l=0$ and

$$
\begin{array}{r}
(2 k+6) \Theta(\infty, f)+2 \Theta\left(w_{p}, f\right)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+1} \delta_{\mu_{k+1}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right) \\
>4(m+n)-5 p+2 k+8+\mu_{2}+\mu_{k+1}+\mu_{k+2} \tag{1.7}
\end{array}
$$

then $\mathcal{P}(f) \equiv(\mathcal{P}(f))^{(k)}$.
We can easily deduce the following corollaries from the above theorem.
Corollary 1.2. Let $k(\geq 1), l(\geq 0), n(\geq 1), p(\geq 1)$ and $m(\geq 0)$ be integers, f and $f_{1}=f-w_{p}$ be two non-constant entire functions. Let $\mathcal{P}(z)=a_{m+n} z^{m+n}+\ldots+a_{n} z^{n}+\ldots+a_{0}, a_{m+n} \neq 0$, be a polynomial in z of degree $m+n$ such that $\mathcal{P}(f)=f_{1}^{p} P\left(f_{1}\right)$. Also let $a \equiv a(z)(\equiv 0, \infty)$ be a small function with respect to f. Suppose $\mathcal{P}(f)-a$ and $(\mathcal{P}(f))^{(k)}-a$ share $(0, l)$.
If $l \geq 2$ and

$$
\delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)>1+\frac{m+n-2 p}{\mu_{2}+\mu_{k+2}}-\frac{\mu_{2}}{\mu_{2}+\mu_{k+2}}\left[\delta_{\mu_{2}^{*}}\left(w_{p}, f\right)-\delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)\right]
$$

or $l=1$ and

$$
\begin{aligned}
\delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)> & +\frac{3(m+n)-5 p}{2\left(\mu_{2}+\mu_{k+2}\right)+1} \\
& -\frac{1}{2\left(\mu_{2}+\mu_{k+2}\right)+1}\left[2 \mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)-\left(2 \mu_{2}+1\right) \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)-\Theta\left(w_{p}, f\right)\right]
\end{aligned}
$$

or $l=0$ and

$$
\begin{aligned}
& \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)>1+\frac{4(m+n)-5 p}{\mu_{2}+\mu_{k+1}+\mu_{k+2}+2} \\
& -\frac{1}{\mu_{2}+\mu_{k+1}+\mu_{k+2}+2}\left[\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+1} \delta_{\mu_{k+1}^{*}}\left(w_{p}, f\right)-\left(2+\mu_{2}+\mu_{k+2}\right) \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)+2 \Theta\left(w_{p}, f\right)\right]
\end{aligned}
$$

then $\mathcal{P}(f) \equiv(\mathcal{P}(f))^{(k)}$.

Corollary 1.3. Let $k(\geq 1), l(\geq 0), n(\geq 1)$ and $m(\geq 0)$ be integers, f be non-constant meromorphic function. Let $P(z)=a_{m} z^{m}+\ldots+a_{0}, a_{m} \neq 0$, be a polynomial in z of degree m. Also, let $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic small function. Suppose $f^{n} P(f)-a$ and $\left(f^{n} P(f)\right)^{(k)}-a$ share $(0, l)$.
If $l \geq 2$ and

$$
(k+3) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)>m-p+k+3+\mu_{2}+\mu_{k+2}
$$

or $l=1$ and

$$
\begin{aligned}
\left(k+\frac{7}{2}\right) \Theta(\infty, f)+\frac{1}{2} \Theta\left(w_{p}, f\right)+ & \mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right) \\
& >\frac{3 m-2 p}{2}+k+4+\mu_{2}+\mu_{k+2}
\end{aligned}
$$

or $l=0$ and

$$
\begin{aligned}
(2 k+6) \Theta(\infty, f)+2 \Theta\left(w_{p}, f\right)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right) & +\mu_{k+1} \delta_{\mu_{k+1}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right) \\
& >4 m-p+2 k+8+\mu_{2}+\mu_{k+1}+\mu_{k+2}
\end{aligned}
$$

then $f^{n} P(f) \equiv\left(f^{n} P(f)\right)^{(k)}$.
The following example shows that the conditions in (1.5) - (1.7) in Theorem 1.1 cannot be removed.
Example 1. Let $f(z)=\cos (\alpha z)+a-\frac{a}{\alpha^{8 d}}, d \in N$; where $\alpha \neq 0, \alpha^{8 d} \neq 1$ and $a \in \mathbb{C}-\{0\}$. Let $p=n=1, w_{p}=0$ and $m=0$. Let $\mathcal{P}(f)=f, \mathcal{P}(f)^{(k)}=f^{(8 d)}$. Then $\mathcal{P}(f)^{(k)}=\cos (\alpha z) \alpha^{8 d}$. Here $m=0, \mu_{2}=1$. Again $\Theta(\infty ; f)=1$ and

$$
\bar{N}\left(r, \frac{1}{f}\right)=\bar{N}\left(r, \frac{1}{\cos (\alpha z)-\left(a-\frac{a}{\left.\alpha^{8 d}\right)}\right.}\right) \sim T(r, f)
$$

Therefore,

$$
\Theta(0 ; f)=0=\delta_{p}(0 ; f), \forall p \in N
$$

Also it is clear that $\mathcal{P}(f)$ and $\mathcal{P}(f)^{(k)}$ share $(a, l)(l \geq 0)$ but none of the inequalities (1.5), (1.6) and (1.7) of Theorem 1.1 is satisfied and $\mathcal{P}(f) \not \equiv \mathcal{P}(f)^{(k)}$.

2 Preliminary Lemmas

Let F and G be two non-constant meromorphic functions. We denote by H the following function:

$$
\begin{equation*}
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right) \tag{2.1}
\end{equation*}
$$

Lemma 2.1 (see [9]). Let f be a non constant meromorphic function, k, p, be two positive integers, then

$$
\begin{aligned}
N_{p}\left(r, \frac{1}{f^{(k)}}\right) & \leq N_{p+k}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) . \\
\text { Clearly, } \bar{N}\left(r, \frac{1}{f^{(k)}}\right) & =N_{1}\left(r, \frac{1}{f^{(k)}}\right)
\end{aligned}
$$

Lemma 2.2 (see [6]). Let H be defined as in (2.1). If F and G share 1 IM and $H \not \equiv 0$, then

$$
N_{11}\left(r, \frac{1}{F-1}\right) \leq N(r, H)+S(r, F)+S(r, G)
$$

Lemma 2.3 (see [1]). Let F and G share $(1, l)$ and $\bar{N}(r, F)=\bar{N}(r, G)$ and $H \not \equiv 0$, then

$$
\begin{aligned}
N(r, H) & \leq \bar{N}(r, F)+\bar{N}_{(2}\left(r, \frac{1}{F}\right)+\bar{N}_{(2}\left(r, \frac{1}{G}\right)+\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)+\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right) \\
& +\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, f)
\end{aligned}
$$

3 Proof of the Theorem

Proof of Theorem 1. Let $F=\frac{\mathcal{P}(f)}{a}=\frac{f_{1}^{p} P\left(f_{1}\right)}{a}$ and $G=\frac{(\mathcal{P}(f))^{(k)}}{a}=\frac{\left(f_{1}^{p} P\left(f_{1}\right)\right)^{(k)}}{a}$.
Since $\mathcal{P}(f)-a$ and $[\mathcal{P}(f)]^{(k)}-a$ share $(0, l), \stackrel{F}{F}, G$ share $(1, l)$ except the zeros and poles of $a(z)$. Also note that $\bar{N}(r, F)=\bar{N}(r, f)+S(r, f)$ and $\bar{N}(r, G)=\bar{N}(r, f)+S(r, f)$. Let H be defined as in (2.1).
We consider the following cases.
Case 1. Suppose $H \not \equiv 0$. By the second fundamental theorem of Nevanlinna, we have

$$
\begin{align*}
T(r, F)+T(r, G) & \leq \bar{N}(r, F)+\bar{N}(r, G)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{G}\right)+\bar{N}\left(r, \frac{1}{F-1}\right)+\bar{N}\left(r, \frac{1}{G-1}\right) \\
& -\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)-\bar{N}_{0}\left(r, \frac{1}{G^{\prime}}\right)+S(r, F)+S(r, G) \tag{3.1}
\end{align*}
$$

where $\bar{N}_{0}\left(r, \frac{1}{F^{\prime}}\right)$ denotes the reduced counting function of the zeros of F^{\prime} which are not the zeros of $F(F-1)$.
Since F and G share 1 IM , it is easy to verify that

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{F-1}\right) & =N_{11}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+\bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& +N_{E}^{(2}\left(r, \frac{1}{G-1}\right)=\bar{N}\left(r, \frac{1}{G-1}\right) \tag{3.2}
\end{align*}
$$

Using Lemmas 2.2, 2.3, (3.1) and (3.2), we get

$$
\begin{align*}
T(r, F)+T(r, G) & \leq 3 \bar{N}(r, F)+N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+N_{11}\left(r, \frac{1}{F-1}\right)+2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right) \\
& +3 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right)+S(r, F)+S(r, G) . \tag{3.3}
\end{align*}
$$

Subcase 1.1. Let $l \geq 2$.
Obviously,

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right) & +2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \\
& \leq T(r, G)+S(r, F)+S(r, G) \tag{3.4}
\end{align*}
$$

Using (3.3) and (3.4), we get

$$
\begin{equation*}
T(r, F) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+3 \bar{N}(r, F)+S(r, F) \tag{3.5}
\end{equation*}
$$

Using Lemma 2.1, (1.4) and (3.5), we get

$$
\begin{aligned}
(n+m) T(r, f) & \leq N_{2}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right)+N_{2}\left(r, \frac{1}{\left(f_{1}^{p} P\left(f_{1}\right)\right)^{(k)}}\right)+3 \bar{N}(r, f)+S(r, f) \\
& \leq 3 \bar{N}(r, f)+\mu_{2} N_{\mu_{2}^{*}}\left(r, \frac{1}{f-w_{p}}\right)+(n+m-p) T(r, f) \\
& +N_{k+2}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right)+k \bar{N}(r, f)+S(r, f) \\
& \leq(k+3) \bar{N}(r, f)+\mu_{2} N_{\mu_{2}^{*}}\left(r, \frac{1}{f-w_{p}}\right)+2(n+m-p) T(r, f) \\
& +\mu_{k+2} N_{\mu_{k+2}^{*}}\left(r, \frac{1}{f-w_{p}}\right)+S(r, f)
\end{aligned}
$$

So, $\quad(k+3) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right) \leq m+n-2 p+k+3+\mu_{2}+\mu_{k+2}$, which contradicts with (1.5).

Subcase 1.2. Let $l=1$.
It is easy to verify that

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right) & +2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{F-1}\right)+3 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \\
& \leq T(r, G)+S(r, F)+S(r, G) . \tag{3.6}\\
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) & \leq \frac{1}{2} N\left(r, \frac{F}{F^{\prime}}\right) \\
& \leq \frac{1}{2} N\left(r, \frac{F^{\prime}}{F}\right)+S(r, F) \\
& \leq \frac{1}{2}\left(\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)\right)+S(r, F) . \tag{3.7}
\end{align*}
$$

Using (3.3), (3.6) and (3.7), we get

$$
\begin{equation*}
T(r, F) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+\frac{7}{2} \bar{N}(r, F)+\frac{1}{2} \bar{N}\left(r, \frac{1}{F}\right)+S(r, F) \tag{3.8}
\end{equation*}
$$

Using Lemma (2.1), (1.4) and (3.8), we get

$$
\begin{aligned}
(n+m) T(r, f) & \leq\left(k+\frac{7}{2}\right) \bar{N}(r, f)+\mu_{2} N_{\mu_{2}^{*}}\left(r, \frac{1}{f-w_{p}}\right)+\mu_{k+2} N_{\mu_{k+2}^{*}}\left(r, \frac{1}{f-w_{p}}\right) \\
& +\frac{1}{2} \bar{N}\left(r, \frac{1}{f-w_{p}}\right)+\frac{5}{2}(n+m-p) T(r, f)+S(r, f) .
\end{aligned}
$$

So, $\left(k+\frac{7}{2}\right) \Theta(\infty, f)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right)+\frac{1}{2} \Theta(\infty, f)$

$$
\leq \frac{3(m+n)-5 p}{2}+k+4+\mu_{2}+\mu_{k+2}
$$

which contradicts with (1.6).
Subcase 1.3. Let $l=0$.
It is easy to verify that

$$
\begin{align*}
N_{11}\left(r, \frac{1}{F-1}\right) & +2 N_{E}^{(2}\left(r, \frac{1}{G-1}\right)+\bar{N}_{L}\left(r, \frac{1}{F-1}\right)+2 \bar{N}_{L}\left(r, \frac{1}{G-1}\right) \\
& \leq N\left(r, \frac{1}{G-1}\right)+S(r, F) \\
& \leq T(r, G)+S(r, F)+S(r, G) \tag{3.9}\\
\bar{N}_{L}\left(r, \frac{1}{F-1}\right) & \leq N\left(r, \frac{1}{F-1}\right)-\bar{N}\left(r, \frac{1}{F-1}\right) \\
& \leq N\left(r, \frac{F}{F^{\prime}}\right) \leq N\left(r, \frac{F^{\prime}}{F}\right)+S(r, F) \\
& \leq \bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, F)+S(r, F) . \tag{3.10}
\end{align*}
$$

Using (3.3), (3.9) and (3.10), we get

$$
\begin{equation*}
T(r, F) \leq N_{2}\left(r, \frac{1}{F}\right)+N_{2}\left(r, \frac{1}{G}\right)+6 \bar{N}(r, F)+2 \bar{N}\left(r, \frac{1}{F}\right)+N_{1}\left(r, \frac{1}{G}\right)+S(r, F) . \tag{3.11}
\end{equation*}
$$

Using Lemma 2.1 and (3.11), we get

$$
\begin{aligned}
(n+m) T(r, f) & \leq N_{2}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right)+N_{2}\left(r, \frac{1}{\left(f^{p} P\left(f_{1}\right)\right)^{(k)}}\right)+6 \bar{N}(r, f)+2 \bar{N}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right) \\
& +N_{1}\left(r, \frac{1}{\left(f_{1}^{p} P\left(f_{1}\right)\right)^{(k)}}\right)+S(r, f)
\end{aligned}
$$

So,

$$
\text { So, } \begin{aligned}
(2 k+6) \Theta(\infty, f) & +2 \Theta\left(w_{p}, f\right)+\mu_{2} \delta_{\mu_{2}^{*}}\left(w_{p}, f\right)+\mu_{k+1} \delta_{\mu_{k+1}^{*}}\left(w_{p}, f\right)+\mu_{k+2} \delta_{\mu_{k+2}^{*}}\left(w_{p}, f\right) \\
& \leq 4(m+n)-5 p+2 k+8+\mu_{2}+\mu_{k+1}+\mu_{k+2} .
\end{aligned}
$$

which contradicts with (1.7).
Case 2. Suppose $H \equiv 0$. Using (2.1), we get

$$
\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}=\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}
$$

Hence,

$$
\begin{equation*}
\frac{1}{F-1} \equiv C \frac{1}{G-1}+D \tag{3.12}
\end{equation*}
$$

where C, D are constants and $C \neq 0$.
We discuss the following three cases:
Subcase 2.1. When $D \neq 0,-1$.
Rewrite (3.12) as,

$$
\frac{G-1}{C}=\frac{F-1}{D+1-D F},
$$

we have,

$$
\bar{N}(r, G)=\bar{N}\left(r, \frac{1}{F-\frac{(D+1)}{D}}\right) .
$$

By using second fundamental theorem of Nevanlinna, we get

$$
\begin{aligned}
(n+m) T(r, f) & =T(r, F)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}\left(r, \frac{1}{F-\frac{(D+1)}{D}}\right)+S(r, f) \\
& \leq \bar{N}(r, F)+\bar{N}\left(r, \frac{1}{F}\right)+\bar{N}(r, G)+S(r, f) \\
& \leq 2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f_{1}^{p} P\left(f_{1}\right)}\right)+S(r, f) \\
& \leq 2 \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-w_{p}}\right)+(n+m-p) T(r, f)+S(r, f) .
\end{aligned}
$$

So, $\quad 2 \Theta(\infty, f)+\Theta\left(w_{p}, f\right) \leq 3-p$,
which contradicts with (1.5), (1.6) and (1.7).

Subcase 2.2. When $D=0$. Then from (3.12), we get

$$
\begin{equation*}
G=C F-(C-1) \tag{3.13}
\end{equation*}
$$

If $C \neq 1$, then

$$
\bar{N}\left(r, \frac{1}{G}\right)=\bar{N}\left(r, \frac{1}{F-\frac{(C-1)}{C}}\right) .
$$

Proceeding as in Subcase 2.1, we get

$$
(n+m) T(r, f) \leq(k+1) \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-w_{p}}\right)+2(n+m-p) T(r, f)+N_{k+1}\left(r, \frac{1}{f-w_{p}}\right)+S(r, f)
$$

So, $\quad(k+1) \Theta(\infty, f)+\Theta\left(w_{p}, f\right)+\mu_{k+1} \delta_{\mu_{k+1}^{*}}\left(w_{p}, f\right) \leq k+2+\mu_{k+1}+n+m-2 p$,
which contradicts with (1.5), (1.6) and (1.7).
Therefore, $C=1$.
By using (3.13), we get $F \equiv G$ and so, $f_{1}^{p} P\left(f_{1}\right)=\left(f_{1}^{p} P\left(f_{1}\right)\right)^{(k)}$.
Subcase 2.3. When $D=-1$. Then from (3.12) we get

$$
\begin{aligned}
\frac{1}{F-1} & =\frac{C}{G-1}-1 \\
\Rightarrow \frac{F}{F-1} & =\frac{C}{G-1} .
\end{aligned}
$$

Hence we have $\bar{N}\left(r, \frac{1}{F}\right)=\bar{N}(r, G)=S(r, f)$ and hence $\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)$.
If $C \neq-1$, then

$$
\bar{N}\left(r, \frac{1}{G}\right)=\bar{N}\left(r, \frac{1}{F-\frac{C}{C+1}}\right)
$$

Proceeding as in Subcase 2.1, we get

$$
(n+m) T(r, f) \leq(k+1) \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-w_{p}}\right)+2(n+m-p) T(r, f)+N_{k+1}\left(r, \frac{1}{f-w_{p}}\right)+S(r, f)
$$

So, $\quad(k+1) \Theta(\infty, f)+\Theta\left(w_{p}, f\right)+\mu_{k+1} \delta_{\mu_{k+1}^{*}}\left(w_{p}, f\right) \leq k+2+\mu_{k+1}+n+m-2 p$
which contradicts with (1.5), (1.6) and (1.7).
Therefore, $C=-1$.
By using (3.13), we get $F G \equiv 1$.
Hence, $\mathcal{P}(f)(\mathcal{P}(f))^{(k)}=a^{2}$. Thus in this case,

$$
\bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)=S(r, f)
$$

Hence we have,

$$
\begin{equation*}
\frac{(\mathcal{P}(f))^{(k)}}{\mathcal{P}(f)}=\frac{a^{2}}{(\mathcal{P}(f))^{2}} \tag{3.14}
\end{equation*}
$$

From first fundamental theorem and (3.14), we get

$$
\begin{aligned}
2 T(r, \mathcal{P}(f)) & \leq T\left(r, \frac{(\mathcal{P}(f))^{(k)}}{\mathcal{P}(f)}\right) \\
& \leq N\left(r, \frac{(\mathcal{P}(f))^{(k)}}{\mathcal{P}(f)}\right)+S(r, f) \\
& \leq k\left(\bar{N}(r, \mathcal{P}(f))+\bar{N}\left(r, \frac{1}{\mathcal{P}(f)}\right)\right)+S(r, f) \\
& \leq S(r, f)
\end{aligned}
$$

which is impossible.
Hence the theorem.

References

[1] A. Banerjee and S. Majumder, On the uniqueness of a power of a meromorphic function sharing a small function with the power of its derivative, Comment. Math. Univ. Carolin. 51 (2010), no. 4, 565-576.
[2] A. Banerjee and B. Chakraborty, Further investigations on a question of Zhang and Lü, Ann. Univ. Paedagog. Crac. Stud. Math. 14 (2015), 105-119.
[3] R. Brück, On entire functions which share one value CM with their first derivative, Results Math. 30 (1996), no. 1-2, 21-24.
[4] W. K. Hayman, Meromorphic functions, Oxford, Clarendon Press, 1964.
[5] I. Lahiri and A. Sarkar, Uniqueness of a meromorphic function and its derivative, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 1, Article 20, 9 pp.
[6] J.-D. Li and G.-X. Huang, On meromorphic functions that share one small function with their derivatives, Palest. J. Math. 4 (2015), no. 1, 91-96.
[7] L. Liu and Y. Gu, Uniqueness of meromorphic functions that share one small function with their derivatives, Kodai Math. J. 27 (2004), no. 3, 272-279.
[8] L.-Z. Yang, Solution of a differential equation and its applications, Kodai Math. J. 22 (1999), no. 3, 458-464.
[9] Q. Zhang, Meromorphic function that shares one small function with its derivative, JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 4, Article 116, 13 pp.

